Long-time behavior for a nonlocal convection diffusion equation
نویسندگان
چکیده
منابع مشابه
A Nonlocal Convection-diffusion Equation
In this paper we study a nonlocal equation that takes into account convective and diffusive effects, ut = J ∗u−u+G ∗ (f(u))− f(u) in R, with J radially symmetric and G not necessarily symmetric. First, we prove existence, uniqueness and continuous dependence with respect to the initial condition of solutions. This problem is the nonlocal analogous to the usual local convection-diffusion equatio...
متن کاملFinite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملFinite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients
In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...
متن کاملLarge Time Behavior for a Nonlocal Diffusion Equation with Absorption and Bounded Initial Data
Abstract. We study the large time behavior of nonnegative solutions of the Cauchy problem ut = ∫ J(x − y)(u(y, t) − u(x, t)) dy − u, u(x, 0) = u0(x) ∈ L , where |x|u0(x) → A > 0 as |x| → ∞. One of our main goals is the study of the critical case p = 1 + 2/α for 0 < α < N , left open in previous articles, for which we prove that t|u(x, t) − U(x, t)| → 0 where U is the solution of the heat equati...
متن کاملA modified diffusion coefficient technique for the convection diffusion equation
A new modified diffusi on coefficient (MDC) technique for solv ing conve ction diffusion equation is proposed. The Galerkin finite-element discretization process is applied on the modified equation rather than the original one. For a class of one-dimensional convec-tion–diffusion equations, we derive the modi fied diffusion coefficient analytically as a function of the equation coefficients and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.05.070